THE MALESIAN COROEBINI, PART I.
INTRODUCTION, NOMENCLATURAL CHANGES, AND THE DESCRIPTION OF A NEW GENUS AND SPECIES FROM SABAH (COLEOPTERA: BUPRESTIDAE)

C. L. BELLAMY

Department of Entomology, Transvaal Museum, P.O. Box 413, Pretoria 0001, Republic of South Africa

ABSTRACT

A new genus and species of Coroebini, *Borneoscelis variegatus*, from Sabah is described and illustrated. Four species of *Amorphosorna* Laporte are transferred to *Vanroonia* Obenberger: *A. javana* Kerremans, *A. moultoni* Kerremans, *A. pyropyga* Kerremans and *A. spinipennis* Kerremans. *Cisseicoraebus montanus* Fisher is transferred to *Coroebus* Laporte and Gory. *Cisseis pretiosissima* Kerremans is transferred to *Anocisseis* Bellamy and *Coroebus rajah* Fisher is proposed as its junior synonym. A list of the coroebine genera of the Malesian region is given.

The buprestid tribe Coroebini Bedel is by far the largest tribal taxon in the family based on the number of included genera (*ca*. 130, *i.e.*, Bellamy 1985, 1988a). However, nowhere in the world is the fauna more poorly known than in the large region from India through Southeast Asia and the entire Malesian zoogeographical province. With the exception of the work on the fauna of Laos by Baudon (*e.g.*, 1966) and of French Indochina by Descarpentries and Villiers (*e.g.*, 1966), this entire region has not been studied and is in dire need of comprehensive revisionary work, especially over the myriad diminutive taxa. The most recent work on buprestids from the Malesian region is the list started by Moulton (1911) and completed by Kerremans (1912).

The discovery of an undescribed genus and species from Sabah presented the opportunity to list the known coroebine genera of the Malesian region as a starting point for future revisionary studies. Some nomenclatural changes are apparent from the studies of type specimens in London and Prague and these will be proposed below. Undoubtedly much remains to be studied and settled before the taxonomy of this interesting group can be completed for this area of the world.

METHODS AND MATERIALS

The following abbreviations are used for the collections from which material was examined or will be deposited: The Natural History Museum, London [formerly British Museum (Natural History)](BMNH); Masao Toyama collection, Nishinomiya, Hyogo, Japan (MTCJ); National Museum, Prague, Czech Republic (NMPC); National Museum of Natural History, Smithsonian Institution, Washington, D.C. (USNM) and Vitezslav Kuban, Brno, Czech Republic (VKBC).

The dimensional and proportional measurements used in the following description were determined by the use of an ocular scale in the eyepiece of a
Wild M7 stereo dissecting scope. The drawings were made with the aid of a camera lucida attachment.

DISCUSSION

THE MALESIAN COROEBINI. The following genera are represented in the Male-esian fauna, mostly as listed by Obenberger (1935).

- *Vanroonia* Obenberger 1923:29
- *Demostis* Kerremans 1900:322
- *Epimacha* Kerremans 1900:321
- *Polyonychus* Chevrolat 1837:102
- *Cryptodactylus* Deyrolle 1864:130
- *Toxoscelus* Deyrolle 1864:127
- *Borneoscelus* Bellamy, new genus
- *Neotoxoscelus* Fisher 1921:418
- *Metasambus* Kerremans 1903:237

At this time, I am unable to provide a key to separate these taxa, as I have not been able to study them concurrently. In some cases these taxa are thought to be heterogeneous and await further study before uniform generic criteria can be established.

NOMENCLATURAL CHANGES. Following my earlier comments regarding *Van-roonia* (Bellamy 1988a, b), I propose the following new combinations in order to further limit the species definition of the Neotropical genus *Amorphosoma* Laporte from the catalogue listings of Obenberger (1935).

Although similar in general facies, *Amorphosoma* and *Vanroonia* differ most noticeably in that *Amorphosoma* has a single longitudinal carina on the disk of each elytron extending from opposite the humerus to near the apex; the elytral disk of *Vanroonia* is entire, with no indication of any carinae. The number, extent, configuration, and vestiture of the head tubercles differ between these two genera with *Amorphosoma* limited to one pair, densely covered with erect, elongate, stout, squamose setae; *Vanroonia* exhibits a range of character states ranging from one to two pair, the dorsal-most pair often somewhat elongate and more strongly produced at one end than the other, and either with a setal covering or naked. The elytral apices of *Amorphosoma* are generally separately rounded and the margin strongly serrate, while in *Vanroonia* a large percentage of the species examined have the elytral apices subtruncate and with a stout, strongly posteriorly produced acuminate spine on each elytron. These three groups of characters tend to separate these two genera that are also defined by their extant geography, with *Amorphosoma* restricted to the New World tropics and *Vanroonia* found throughout the Old World tropics. Based then on these physical and geographical parameters, I will propose the following four species be combined under *Vanroonia*. I have examined the types of three species and studied the descriptions of all four.

Vanroonia javana (Kerremans), **new combination**

I have examined the type series of this species (BMNH).
THE COLEOPTERISTS BULLETIN 49(1), 1995

Vanroonia moultoni (Kerremans), **new combination**

Amorphosoma moultoni Kerremans 1912:74; Obenberger 1935:793.

I have not been able to study the type of this species; however, the description agrees in all aspects to my concept of *Vanroonia*.

Vanroonia pyropyga (Kerremans), **new combination**

Amorphosoma pyropygum Kerremans 1903:255; Obenberger 1935:793.

I have examined the type series of this species (BMNH).

Vanroonia spinipennis (Kerremans), **new combination**

I have examined the type series of this species (BMNH).

Coroebus montanus (Fisher), **new combination**

In light of my earlier studies of the Philippine coroebine taxa (Bellamy 1990, 1991), I feel this proposed new combination is needed. *Coroebus* and *Cisseicoraebus* can be separated most immediately, as I indicated in the 1990 key, by the presence or absence of the mentonniere. I have examined the single paratype (USNM Type #57381) and one additional specimen (USNM) and propose this combination following a study of the Obenberger collection (NMPC), the specimens housed in USNM and that in VKBC. It would appear that *C. montanus* belongs to a species group of *Coroebus* defined by *C. andrewsi* Obenberger. My recent (Bellamy 1991) consideration of the genus *Cisseicoraebus* Kerremans convinces me that *C. montanus* is not congeneric with that taxon.

Anocisseis pretiosissima (Kerremans), **new combination**

Coroebus rajah Fisher 1930:66; Obenberger 1935:833, **new synonymy**.

Anocisseis rajah, Bellamy 1990:695.

At the time I described *Anocisseis* (Bellamy 1990) and transferred Fisher's species *Coroebus rajah* to that taxon, I was unaware of this synonymy. From the description (Kerremans 1898), *Cisseis pretiosissima* is conspecific with *Coroebus rajah* (USNM Type #57428) and matches a specimen determined as the former by Obenberger (NMPC).

Genus Borneoscelus, new genus

Type species: *Borneoscelus variegatus*, new species

Coroebini; elongate, ovoid, flattened above. Head with frontovertex slightly produced between eyes; circumocular grooves confluent with transverse frontoclypeal groove anterior to antennal cavities; genae grooved beneath for antennae, margin lobed; labrum setose distally; antennae serrate. Pronotum wider than long; lateral margins subparallel, explanate laterally. Elytra attenuate api-
cally, with circular and zig-zag setal patterns; pygidium with acuminate apex. Prosternum with feebly bilobed mentonniere; process attenuate apically; mes-epimeron partially visible from above; lateral thoracic sternites excavated for first two pairs of legs in repose; metacoxal plate very short, cavity broadly dilated; abdominal sternites 1 + 2 longer than 3 + 4 + 5; sutures between 2, 3, 4, 5 feebly arcuate. Legs with femora stout, sides subparallel; inner margins of pro- and mesofemora slightly excavate with two rows of teeth; pro-, mesotibiae arcuate; tarsi short, tarsomeres 1–4 subequal, with ventral pulvilli, 5 with claws swollen basally. Wing (Fig. 7): with radiomedial crossvein connecting from radial cell to shorten median vein; 2dA, and 2dA2 free; 4thA short, near base. Ovipositor: coroebine type (see Bellamy 1988b).

Borneoscelus is named both for the island of origin and the relationship with Toxoscelus. For comparison, I have examined T. auripes Saunders, T. acutipennis Fisher, T. speciosus Fisher and T. rugicollis Deyrolle. These two genera may be distinguished as in the following diagnostic table.

<table>
<thead>
<tr>
<th>Toxoscelus Deyrolle</th>
<th>Borneoscelus Bellamy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Size generally small, length ≤8 mm.</td>
<td>1. Larger, length ca. 13.0 mm.</td>
</tr>
<tr>
<td>2. Frontoclypeal margin convex.</td>
<td>2. Frontoclypeal margin truncate.</td>
</tr>
<tr>
<td>3. Circumocular groove complete.</td>
<td>3. Circumocular groove only along inner margin.</td>
</tr>
<tr>
<td>5. Anterior margin of pronotum feebly convex medially.</td>
<td>5. Anterior margin of pronotum strongly convex medially.</td>
</tr>
<tr>
<td>7. Metafemora without lateral swelling.</td>
<td>7. Metafemora with lateral swelling (Fig. 6).</td>
</tr>
</tbody>
</table>

Borneoscelus variegatus, new species
(Figs. 1–7)

Holotype (female). 13.0 × 4.4 mm; dark cupreous with varying reflections depending on sculpture and angle of incident light; surface variously striolate, except abdomen, which is punctate; generally sparsely setose, setae more concentrated in depressions of head and pronotum; elytra with variegated setal fasciae as in Fig. 1. Head feebly produced between eyes; frontovertex with medial ovoid depression; eyes large, inner margins very slightly diverging dorsally; circumocular grooves most evident along inner margin between dorsal and ventral ocular apices; grooves confluent with transverse preantennal groove; frontoclypeus compressed between large antennal cavities, slightly longitudinally depressed; surface with large foveae ventral to antennal cavities; distal margination broadly concave between slight lateral lobes, margins then bisinuate laterally to attenuate genal lobe; genae transversely depressed ventral to eye to receive basal antennomeres in repose; antennae short, antennomere 1 long, robust, geniculate basally; 2 short, subglobose; 3 shorter, narrower than 2; 4 subequal to 3; 5–10 serrate; 11 shorter.

Figs. 1–7. Borneoscelus variegatus, Fig. 1, dorsal habitus; Fig. 2, lateral aspect; Figs. 3, 4, head: right frontal aspect (3); left lateral aspect (4); Fig. 5, median thoracic region, ventral aspect; Fig. 6, metatibia, ventral aspect; Fig. 7, left hind wing, ventral aspect (scale lines = 1 mm and are equal for Figs. 1 and 2; 3–6).
than 10, oblong. Pronotum 1.7 x wide as long, widest just past base; anterior margin sinuate laterally, strongly convex medially; posterior margin with slight emargination anterior to scutellum, bisinuate laterally; laterobasal angles obtuse; lateral margins sub-parallel to apical 1/3, then roundly attenuate to anterior margin; lateral margins, when viewed from the side, bisinuate, extending ventral toward anterior margin at nearly 45° angle from base; disc with lateral 1/3 strongly explanate, anteromedial portion transversely convex, medial portion compressed laterally forming a narrow longitudinal elevation with a slight medial depression; posterior 1/3 of disc gradually declivous to entire at posterior margin; scutellum large, triangular; lateral angles rounded; acuminete posteriorly. Elytra widest at base, narrower than pronotum; humeri only slightly swollen; basal margin with slight projecting lobe halfway between scutellum and humeri; lateral margins subparallel to before basal 1/2, narrowing slightly before widening to midpoint, then attenuately converging to separately angularly rounded apices; disc transversely convex laterally, flattened medially, strongly declivous at lateroapical angles; pygidium not visible from above.

SPECIMENS EXAMINED. Holotype, female (MTCJ): Malaysia, Sabah, 10.5 km from Keningau (5°21'N, 116°11'E), 18.IV.1984, M. Ito.

This species is named for the variegated pattern of setae on the elytra. It may be distinguished by its large size and the generic characters listed above.

ACKNOWLEDGMENTS

I would like to thank my colleague Masao Toyama for presenting me with the opportunity to describe this interesting new species. I would also like to thank my good friend Svata Bily (NMPC) and his family for the hospitality of their home in Prague and for access to the Obenberger collection during my 1990 visit to Czechoslovakia and for introducing me to Vita Kuban, who also shared his home and collection. Most of this paper was prepared at the U.S. National Museum of Natural History, Smithsonian Institution during 1990; I appreciate the use of those facilities and library during that time.

LITERATURE CITED

(Received 19 July 1993; accepted 27 October 1993)